1. A Notation for Moves

In order to examine more closely the operation of the pyraminx
and to work out good sequences of moves, it is necessary ito be able
to write down movea in some sultable notation and to have a sysiema-
tic way of telling what pattern or ngtate" of the pyraminx a given
sequence produces. The dlagrams and coloured patterns that have
been used so far have served well for descriptiion, but are not so
effective for snalysis

Here is a notation for giving a sequence
of moves which is clear, accurate and can be i§h°
written concisely. Place the pyraminx in the //b
way it has usually been illustrated, with an B ¢m‘
underneath face, a face to the froni and one on Lott ‘E%Lt
either mside sloping to a vertex at the back,

Label the vertices as shown. Now denote a full twist of the top in

a clockwise direction by the letter T and a clockwise vertex twist

of the top by t.

Similarly a full clockwise twist of the left vertex will be
denoted by L and a vertex twist of the same left vertex vy 4 .

For right twists the symbols are R and r and for twists
of the back vertex B and b, naturally! Twists in an anticlockwismse
direction will be denotes by T', t', L', 4*, R', r', B' and b*

respectively.

Ueing this notation, fgmeeeecsEleny o Quick sequence of moves
leading to the Jewel pattern may be written:

TRTR'TRTR',
eight moves in all. In the diagram method these would be shown as:

A I ISRl

but the sequence of lotters is a precisely equivalent statement.



As a second example, consider the sequence of 20 moves

giving Joseph's Coat:

RLELRLRLRLTBTBTBTBTSB.
If we think of the letters representing the moves as being
wgultiplied together" when they are pla.ced side~by-side, then
this sequence could be written briefly ass

(RL)°(TB)° .

A fina) example of the notation is provided by Pharoah's
Cup, which can be obtained with the sequence:

L*RLRBRT B' T BT B' (T't) .

If the final pair T't of this sequence is regarded as a single

n"glice" move, then this is & 13 move sequence.

The notation for moves is concise and helpful for recording
sequences of moves. Sometimes 11 is also useful for spotting
small shortcutis. Notice that a repeated move can be replaced
by & single one, RR = R' for instance, while & pair of moves such
as T T* is effectively no move at all. These may seem obvious
statements to make in terms of the notation, but when one is
turning the pyraminx eround and about 1t is possible to miss the
fact that such pairs of moves are being made. Por example a
quick and common way to make Doors is R L' R' L followed by

a turn of the pyraminx and then another similar sequence.

Analysis with the written
notation shows that the second sequence is in fact L B* L' B,

and putting the two together givesnoi an eight move sequence, but
a sevén move seguence, namely: RL'*R'" L' B' L' B. The final
L of the sequence along with the first L of the second sequence

together give a single L'.

The  Doors T-move sequence can be coupled with a 7-move
sequence for Doubles, namely R' TR TR' TR to glve Chariot
in only 12 movsss R*PTRTR* TR* L' R*" L' B* L' B .,

There are things for which we aa yet have no mechanism,
however, in spite of the notation. If is not obvious what is the
end effect of a given sequence of moves, nor is it clear when téwe
sequences of moves lead to the same pattern. For example, who
would have thought that _

(re'w)’ (9 moves)

and R* LRL'TL' ™ LB LBL RL' R'LT LTL'BL'B L (24 movea)
lead to the same pattern? The second sequence (three Cat's Paws)

is in scue senses the more logical way of ariving at the King's

Treasure Chest, but it is certainly not the most efficient!
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2. Recording a Pattern e

It is easy to record the positions ofAthe vertex and middle
blocks. We do it by noting the composite move needed to bring
the blocks from their "pure" positions to the given one without
affecting any other blocks., Thus we shall write

Jt’ Jﬁ, Jr' Jb
for clockwise Jewel moves about fhe top, left, right and back
vertices respectively.

As it turns out, it will be convenient to modify slightly the

notatién for vertex moves. Write

vt’ Ve '] vr, vb

for t,4@. r and b, and

Ve

for t*, ... , b* respectively. Similarly J{. s g Jé will be the

e VoV

anticlockwise Jewel moves.
With this symbolism tha pattern Joseph's Coat can be denoted by

the product of moves: JtJ@ b
The effect of a single enticlockwime iurn of the middle bloock on the
right may be denoted by A

JI'.Vr ’

and so on.

The positions of ihe edgo blocks are more difficult to describe,
firstly because tuere ar;z:I: blocks which can be rearranged amongsti
themselves, and secondly becauss they can be "flipped" in pairs, and
so the parity, or "flippednesa", of the blocks must be taken into
account as well as their position.

Now that we are dealing with the mathematical properties of the
Pyraminx, which will be irue no matter what colours or surfaces are
usdd for décoration, it is desirable to have & notation which ia
independent of colour. There are systems for doing this on the basis
of the "top/left/right/back" labelling we have already introduced,
but they all contain the seeds of confusion with the notation for
moves, and therefore a "customised" notation may do the Job better.
Por this we simply number the edge positions 1, 2, ... , 6 and
then zet up a glossary as in the following table. The colours
&lven in the first column refer to the illustrated sample colouring.
The reader's colouring may be different, in which case the second
column may be filled in to replace the Iirst. Notice that the order
in which the colours in each pair are mentioned is important.



PE;E&Q;I;;mZn Sample| Reader's Colouring §:;ézion zg:i;ig§i§ymb°l
Blue/Green 1 T
Red/Blue 2 5

! Green/Red 3 3
Yellow/Red 4 4
Green/Yellow 5 5
Yellow/Blue I R g 5

Numbering of
Bdge Positions

Sample
Colouring

Suppose the pyraminx is given & move T, ignoring what
happens to vertices and middles, for the moment, the effect of M
on the sdge blockas is given by the following table:

gi:itiiﬁ moves tor position
1 e 3
2 — b
3 e 2
4 — 4
g B 5
6 ——— 5

Edze moves under 7

Of course “block in position 4 moves to poasition 4" means that this

block is unaffected by .
positions 5 and 6.

The same is true for the blocks in

In this example the parity (flippedness) of the blocks takes
care of itself since the first named face of position 1 (the blue

face of the blue/green poaition) moves to the first named face of

position 3 (the green face of the green/red position), and =0 on.
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or, even more briefly, tc (132). The latter emeeedding concise "short

form® is called the cyclic notation and means:

nPosition 1 moves to the next one mentioned in the brackei: position 33
Position 3 moves to the next one mentioned in the brackets position 23
and DPosition 2, being the last appearing in the bracket, moves to
the first one mentioned in the bracket: position 1.

Because positions 4, 5 and 6 are not mentioned, thearemain unmoved."

The move R 1s an example of a move in which it is necessary to-
be careful about parity, since it does not take care of itself in the
wvay it does for T. The table is:

2i:§:ii: i moves to position
1  mm of 1
2 ——p 2
3 E BElge moves undsr R
4 i 3
5 — 4
6 i e 6

Dars\huve appeared above the 5 and the 3 in the last column
because, for example, the first named face of position 3 (the
green face of the green/red position) has moved to the second
named face of position 5 (the yellow face of the green/yellow
position) and by the same token the second face of position 3 has
moved to the first face of positionm 5.

Once again the table may be abbreviated, either to

1 2 3% 4.5 6
(1 233 4 6)
or alternatively to
(22245 Ny o 5007
1 25 3 4 6

where 735 means "flip the blocks in positions 3 and 5". Notice
that we permute or ‘rearrange by (354) first and then flip by Fie. |
We will see later that P35(354), flipping first and then rearranging,
gives an entirely differeni pattern!

The reader is invited to find similar symbolism for the effects

of L and B on the edge blocks.

with the notation we mow have it is possible to write down any
patiern on the popular pyraminx in terms of rearrangements from &
pure pyraminx, For example one version of the pettern Doubles is:



G 2 z i} - a)e)r, -

anges the edge blooks as:

3
6
‘4’?’;5{,\:»\, Nafertiti's Pan
( (-1- 2.3 45 6) - (1)(36)r, Py
2 2 6 15 3
and the vqrtioes and middle blocks by

[
JHeIdy

"m0 that the pattern as a whole is described by:

I & 5 -] >

(14)(36)?, 4r25J,;J£JI-,J;> .

Every pattern can be described as a permutation of edge bloocks
followed by flips of some of the edges if necessary and them Jewels
and vertex twists to complete the pattern. One more exsmple:
Desert Palms has the description:

(156)(234)!'25.1{91b .
(234) shows the cycling of the edge blocks round the red face and
156) is the effect of the full twist of the back (yellow/green/blue)
5ertzx£f“'g}1§gﬁ}£§u;§?s desoription of the pattern &s only a
description, and does not in itself give much help towards actually
obtaining the pattern. One has to know how to bycle the edge blocks

round ‘the red face, for instance. »

3 Calculating the Effect of Moves

Having methods of recording what moves are being made and what
patterns are being shown is only half the battle. In order to make
caloulations it is m¥mm necessary to marry moves ‘o patierns.

Given a pyraminx, one can find by experiment whati pattern
appears from a giwen sequence of moves. The more interesting
problem is to discover whzt sequence of moves will produce a given
pattern. Related but more challenging questions ask for the
minimal number of moves needed to produce & given pattern and the
maximum niesher of moves a pattern can possibly be away from a pure
pyraminx. The latter problem is unsolved in the general case.
what is the maximum number of moves ever needed to return a
pyraminx to pure form as quickly as possible? The answer lies
somewhere between £2, and 30, but just where is one of the
unresolved secrets of the pyraminx. By this time the reader will
probably have devised & general solution which uses about 30 moves.
An argument giving the lower limit follows.

Vertex twisis never affect the pattern formed by the edge and
middle blocks. Excluding the variations due to the vertex blocks,
there are 75 582 720 =81 = 933 120 patterns. These can be formed
by sequences of full twists. The firat move to be made could be



any one of eight poasibilities

olockwise or antilolockwlss).

/

one of four vertices Wwoveo wLwasy

The sscond and subseguent moves are

chosen from six possidilities each, since one would not, when

working efficiently, move the same vertex twice in succession. Now

the maximum number of pétterns which can possibly arise

0f course at each stiage
sequences lead to the same pattern.
obtained by seguences of 7 moves are different, there are still
not enough to cover all the pmmxiiim patterns known to exist. At
least 8 moves are therefore needed. There are 2 239 488

sequences of 8 moves, enough to cover all the 933 120 patterns if

from
from
from

from

2
3
4

1

fewer patterns may be possible as different
But even if all the patterns

noves
moves
moves

moves

is 8x 6
is 8x 6
is 8x6
is 8x6

2
3

6. .

48
288
1728

373 248.

there are not to7ﬁany repeats. Adjusting the verilces after a

sequence of 8 moves may add as many as 4 more moves (vertex

twists) giving 12 moves in all.

The set of all sequences of moves of the pyraminx is called the
gzoug‘of the pyraminx, or the pyraminx groun. “ Notice we are talking

about seguences of moves (compoaita moves, or patterms, if one wishes

to think of them this way).

if they give rise to the same paitern.
special kind of algebraic struciure of which the pyraminx group is

KL Py GOy
an example. Here are some of=shbm facts aboutl nzkwhich may eppear
rather obvious but which are precisely what makes useful calculation

possibles

(a) if one sequence of moves in the group, M, say, iz followed

(b)

(e)

(d)

Two sequences are thought to be equal

by a second sequence, Mz, then the repuli is a third

A "group" in this sense is a

D

sequence, ocall it Mg' alzoc in the group. We write M, = Mlnz.

For example

T.'TL, followed by
TL'TLL'RIR' =

(the L at the end of the firast sequence and the L' at the
beginning of the second have effectively cancelled each

other out);

If Ml’ M2 and M3 are three sequences of the group then, for

L'RIR®
TL'TRIR

gives

the purposes of calculation, Ml(M2M3) - (MlMé)M3;

the group contains series such as JtJ% which leave every-

thing unchanged; and

every sequence has & reverse or lnverse series which brings

the pyramin. back to 1ts pure state.



There are two or three cguztilons and techmigues of manfpulaticn
which are basic for calculation in the pyraminx groups

(1) The V's and the J's
Experiment and/or a little thought will show that if M is

any sequence of moves of the pyraminx then

W, = VM and Wy =Jp for i =1,0, torb.,
. We say that the V1 and Ji commute with all other moves in the group.
# So to their inveraes, the Vj'. and Ji, (This can be seen by taking

the first equation, for example, and preceding and following both
ideshy V!.
51 esFy vi )
(i1) Flip followed by permutation
Suppose p 1is the permutation (235). Since the block in

position 2 goes to position 3 under p, write 2° = 3, Similarly
write 17 = 1, 3p = 5 and so on.

In general if p is any permutation of 1, ... , 6 then n?
is %o denote the position to which the block in position n goes

under p. With this notation we claim that

»r E @ *
TR ¥ Fipjp (*)

For example F25(234) = (234)F35 ’ o

(F25 has become Fi. 85 it moves across (234) because under (234)
2 goes to 3 and 5 goes to 5).
To see how this happens follow through what happens to the
red/blue block in position 2 under p25(234)=

red/blue flips to blue/red and then the whole block
movea to position 3 (the green/red position) so that
the blue face moves to the green of position 3 and
the red face moves to the red of position 3, i.e.

red/blue goes to red/green, or in other words 2 —_— 3,

Stmilarly 3—> 4, 4—> 2, 5—> 5 and 6— 6 80 that
the final effect is

(

A bit of juggling with symbols and the general equation (*)

4
. > = (234) Fiq

wil W
o O

2 3
T 4

=

as required.

can be shown in the same way.

(111) Permutation followed by permutation

Suppose the sequence of moves Ml has the effect of permuting
the edge blocks by ) = (12)(3456) leaving all vertices and
middle blocks unchanged, and that M2 permutes the edge blocks by



l 4)‘ ) 4 ) S T X7 i 5 wa i ¢
p2 = ( 'EEE 5> - (*ﬁi)(l’;éS). e ANBWeTr Lhe Quesuwiul Wik b
is the effect of Ml followed by M2 we once again simply follow

through what happena 4o each block in turn. My followed by M,

subjects the bloc

(12)

In the sequence

ks to the sequence of permutations:

(3456)(132) (465)-

1 moves to 2 by (12), and then
2 is left fixed by (3456), and then
> moves to 1 by (132), and then
1 is left fixed by (465).

So when all is %old, 1 stays where it is. Doing the same thing

for 2
2 goas to
so that all told

1 which goes to 1 which goes to 3 which goes to
2 moves to 3. A quicker way of writing this

sequence would bdes
2 ey 1 = 1—> 3 —> 3.

Similarly for 33

3 > 3 —> 4 —> 4 —> 6,
1.e. 3 goes to 6 in the end, and in the same way 6 goes to 2 and

4 and 5 stay where they are. The totel effect is therefore

SR

in other words

(12)(3456)(132)(465) = (236).

The above iz an example of multiplylng two permutations together.

Phe sime basic technique may be used for any pair of permutations.

(iv) Two useful

permutation relationships

The "inverse

" of a permutation cycle (i J ... 8 t) is the

reverse cycle (t 8 «.. J i). Thus, for exemple,
(23654)(45632)
Jeaves everything unchanged. (45631) {s the inverse of (23654).
If 40, is a product of iwo cycles then the. ipverse is

(o]

where ol

reapectively. No

example:

» Oy are the reverse cycles of 4 and sy

tice the change of order in the inverse. For

(132)(256)(652)(231)
leaves everything fixed and so (652)(231) 4s the inverse of

(132)(256). The

first factor of the inverse, (652), is itself

the inverse of the second factor of the product, and likewise the

second factor of

the inverse is the inverse of the first factor

of the original product.



Another useful formula for calculating certain products of

permutations is the followings

if p is any permutation and (1 3 ... 8t) is a cycle, then

(1 g ...at)p = (1P P ... 8” tR).

Yor example (642)'1(12345)(642) w (246)(12345)(642)

= (16325).
The 2 and 4 of the original cycle (12345) have become 6 and 2
respectively as these are their images under the permutation (642)
This technique is well worth remembering when dealing with the
pyraminx group, where moves of the form p 1q P @ are very
common. Such moves only affect a few blocks and leave most of

them unchanged, & very useful property.

4. Examples of move sesquences

Now it is possible to write down the effect both of the moves
T, R, L, B, T' etc., and of mequences made from them. Check that

T = (132) Jt T' = (123) J'

R o= (354) Pycd) B = (345) F5,d0
L = (246) Pl L' = (264) F46v
B o= (165) J, 3 = (156) 37 -

A number of sequences are worth mentloning either because they are
particularly useful or because they illustrete how to use the

mechaniam which has been set up for caleculation (and often for both reasons):

(1) BT'B'T = (165)Jb(lzs)J%(lsé)Jt')(lzz)Jt
= (165)(123)(156)(132)J,J1J1J,
= (135)-
This sequence simply rotates the edge pieces round the green face.
Reversing the rotation using the R and B vertices instead of
the B and T ones:
BRER' = (156)(345)F5(265)(345)F35,0 391,
= (156)(345)(165)(345) ¥y ,F5,
= (153) F14F34 .
Now putting the two together:
BT*B'TB'RBR! = (135)(153) F14¥54 = F14P34 §
a Cat's Paws in eight moves. .

(ii) On the other hand repeating the first rotation of (i) using

the T and R vertices instead of the B and T vertices gives:

PR'T'R = (132) Jt (345) F}U Jr(123) J

' )¢
hig t 35 r

(132)(345)(123)(354) T, Fﬁr = (139)r

1]



and putting this topether with the tirst rotalion:

RT!R'TIR'T'R
135 5) T - 3) P
(135)(135) F,‘5 (153) Pre

BT'R'TTR'[T'R

Inspection shows this is Doors round the green face as base,

in 7 moves.

. . s — -~ - / \‘ T
(iii) TB = (132) Jy (165) J, = (132)(155 I3,
- z
5 HJ%S)JgB .
Jince Jt and Jb commute with all other moves

n .n Nn

(TB)" = (13265)" I, Iy
for any integer n. In particular

(18)° = (13265)3 Ji Ji = (13265)3 = (16352)
and only edge pieces are affected by this power of TB. Again

(m3)7 = (13265)° 32 37 = 3232 - g g0 .

t b t b t b

1f we did not know it before, we have now calculated a sequenge of
10 moves giving the Jewel pattern on two vertices. From it can
be deduced a sequence giving Jewel on just a single vertex, although

this will not be a minimal sequence.

5. A Theorem about impossible patterns

-

Bvery permutation can be written as a product of cycles of
length two. TFor example
(135) (13(15)
(135)(2436) (13)(15)(24)(23)(26)

and so on.

]

An even permutation is one which can be written as product

of an even number of cycles of length two. Thus (135) is an even
permutation, and so are (13524%) and (135)(562). It is not
difficult to work out that:

(1) the product of two even permutations is again an
even permutation;

(ii) if a product of cycles of length two is in fact the
identity (leaves everything fixed) then it has an even
number of factors;

(iii) no even permutat’ : ..~ be written as a product of an
odd number of cycles of length two. (1f a permutation

is not even, then it is odd, anu vice verss)
Looking at the expre:sions for 1, R, L and B we see that
they all involve even permutations of the edge blocks, and only

even permutations. It follows that it is not possible to have

a pyraminx pattern which imnlies an odd permutation of the edge

blocks.



Conaidering the eifect of Ty Hy, L, and B on Liv lavcises
it is wulso pomsible to prove that an odd permutaution of the faco-
lets is impossible. In ‘particula.r, therefore, we can be sure it
iz impossible to "flip" a single edge piece or to exchange two
edge pieces while leaving all the others fixed.

For example the above pattern is convinwing and enjoyable.
But is it possible? The formula for the patiern ias:

(162435) Fox Tug SRR /L AR

Te permmtation (16 2 4 3 5) = (16)(12)(14)(13)(25) eand is
therefore odd. The pattern is impossible.

The reader may like to find the formulae for the following
patterns and deduce whether or not th%are poesible on the
popular pyraminx.
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6. The Pyraminx Group in the Abstract

Those who already have some acquaintance with absiract groups
megy recognise that the group of the popular pyraminx is the direct
product ' '

P = Ex3B
of an elementary group B of order 38 and the "edge group" &

of moves of the edge plecesa.

The subgroup 3 is

I TP 20D x U x VD x ¥ x VD x<v, > .

The edge group E 1= an extension of an elementary group

P =<t ... x<f5>
of order 25 by the alternating permutation group A6' To show
how Ac acts on F (in tby&olomrph of F) it is best to think
of Ag as being the even permutations of the edge blocks in
positions 1,2,***,6 as before, and then the elemsnts fl’fZ""'fS
as representing Cats Paw flips such that fi = ri 141° 1wl,000y5

Denote the block in position 1 by Ei' Now the
relationship between the E's and the f's may be shown by the
schema:
ey B
Byt olas, . B 2N . 2P Y
7 £ f 4 £ f B

g | 2 3 4 5 ’
All the rij may be expressed in terms of the f's, reading off

-

from this diagram. Thus for example

F25 = f2f3f4 = h, say .

(E3 and E4 are each flipped twice by h, and hence are left

invariant by it.) or an arbiirary p in Ag
We have already seen, in effect, that/ p £,p flips E o *

i
This is the appropriate form of equation (*) for the present

discusaion (see paragraph 3(ii) above). The action of p
on the group F i now calculated as follows:

under p , E B B B E
gl\f/ 2\f/ 3\f/ 4\4./ b\f/ 6

1 2 3 4 5
becones E B E B B B
PO s P P 5P /6P
& g, 85 &, &5

where the g are the appropriate elements of P, 8y flips

E and . ior example suppose p = (164). How

E
P @+1)P



36 E2 E3 El E5 E4
81 g, 83 g, &s
and &y rlips‘ E6 and E2, i.e. gl = f2f3f4f5,
9% flips 32 and EB' i.e. 52 = f2,
-33 flips E3 and El’ i.e. g3 - f1f2,
34 flips El and E5' i.e. ga = flf2f3f4, and
g5 flips E5 and 34, i.e. 35 = f4 .

In other words

-1
(164)7°1,(264) = L f58 0

(164)71£,(164) = £, and so on.

with this understanding of how A6 is 10 act on P, the
edge group B is the subgroup A6F of the holomorph of F,.
The readsr may prove that E = P', the derived group of the pyraminx
group, and in fact E = E', The centre of P ia just the
subgroup B.

In group theoretic terms the pyraminx puzzle is now the problem
of taking a rather arbltrary seeming set of 8 generators of P,
namely Vi, V5, Voo Vy» (132)3,, (246)f,f 1,1 Iy (354)f3f4Jr and

273475
(lGS)Jb, and then trying to express every element of P in terms of
these generators in the moat economical way.



